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1. Introduction

Mackey (1963) and Segal (1947) have constructed two elegant and quite
general models for quantum mechanics. These two models are not equiva-
lent, yet both have led to fruitful results and a deeper understanding of
quantum theory. Mackey’s work has led to the ‘quantum logic’ approach
which has been carried on by many investigators [for some of these the
reader might refer to the bibliographies in Jauch (1968) and Varadarajan
(1968)], while Segal’s approach is the forerunner of the important C*-
algebra theory of quantum mechanics (e.g., Haag & Kastler, 1964; Segal,
1963). As important as these two models are, very little research seems to
have been performed comparing the two. The only works known to the
author along these lines are those of Plymen (1967, 1968) and Davies (1968),
who have shown that a C*-algebra can be embedded in a X*-algebra.
The C*-algebra corresponds to the Segal model, and Plymen shows that
the 2'*-algebra satisfies the postulates of Mackey’s model. However, a
C*-algebra is much stronger than Segal’s original model, and Segal,
himself, admits that the distributive and associative laws required in a
C*-algebra are physically very artificial. Also, the X' *-algebra cannot be
physically justified and is much stronger than the general structure given
by what Plymen calls ‘Mackey’s essential axioms’. In this paper we consider
Segal’s original model and a generalization of Mackey’s model which we
feel is physically more reasonable. We then show that the Segal model can
be embedded in the Mackey model in a structure-preserving way. This
generalizes Plymen’s results and shows that Segal’s original model can be
extended to a Mackey-type model.

2. The Mackey Model

We first give a formulation of Mackey’s model. Let 0 = {x,y,z,...} and
M == {m,m,,m,,...} be non-empty collections of objects called observables
and states, respectively, and let .4 denote the set of probability measures
on the Borel sets B(R) of the real line R.
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Axiom 1

There is a map p: 0 x M — A denoted by p(x,m)(-).

Axiom 2

If p(x,m)(E) = p(y,m)(E) for every me M, Ee B(R), then x=y. If
p(x,m))(E) = p(x,m,) (E) for every x € @, E € B(R), then m; = m,.
Axiom 3

If x € 0 and f'is a real-valued Borel function on R, then thereis a y e 0
such that p(y,m)(E) = p(x,m)(f ~1(E)) for every m € M, E € B(R).
Axiom 4

If

ml,mz,...EM and t,_:1,0<tl<1

VL

1

then there is an me M such that p(x,m)(E)= > t;p(x,m)(E) for all
xe 0, E€ B(R).

Axiom 5

If E,, E, € B(R) are disjoint, y and x € 0, and p(y,m)(E) > p(x,m)(E,),
plx,m)(E,) for every m € M, then p(y,m)(E) = p(x,m)(E, U E,) for every
meM.

Axiom 6

If there is an m € M such that p(x,m)(E) # 0, then there is an m, e M
such that p(x,m,)(E) = 1.

We call a pair (0, M) satisfying the above six axioms a weak Mackey
model. Axioms 1, 2, 3, 4 and 6 are identical to Mackey’s Axioms I, II, ITI,
IV and VIII respectively. Axiom 5 is weaker than Mackey’s Axiom V,
which can be expressed in this context as follows:

Axiom 5

If x1, X5,... and E;, E,,... are members of ¢ and B(R), respectively, that
satisfy p(x;,m)(E;) + p(x,,m)(E,;) < 1 for all m e M, i # j, then there exists
ayel, Fe B(R) such that p(y,m)(F) = > p(x;,m)(E)) for all me M.

To show Axioms 1 and 5" imply Axiom 5, suppose x, y, E, E, and E,
satisfy the hypotheses of Axiom 5. We denote the complement of a set E
by E”. Since p(y,m)(E") = 1 — p(y,m)(E) < 1 — p(x,m)(E}), 1 — p(x, m)(E>)
we have p(y,m)(E") + p(x,m)(E;) <1 and p(y,m)(E") + p(x,m)(E) < 1.
Applying Axiom 5/, thereis a y; € 0, F € B(R) such that

1> p(y1,m) (F) = p(y,m) (E") + p(x, m) (E) + p(x, m) (E2) for all m & M.
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But this can be rewritten 1> 1 — p(y,m)(E) + p(x,m)(E, U E,), which
gives Axiom 5. We will give reasons later why we postulate the weaker
Axiom 5 instead of Axiom 5’

Notice that Mackey’s Axiom VII, which postulates that the proposition
system of quantum mechanics is isomorphic to the lattice of all closed
subspaces of a Hilbert space, is not used here. This is because of the ‘ad hoc’
nature of this axiom. Of the six axioms we have given, Axioms 1, 2 and 5
are the most important, since it is these that give the structure of the
proposition system that we shall construct. The other axioms can be
dispensed with or weakened in various ways to get a more general theory.
However, we shall retain them because they are useful in other contexts and
because they can be physically justified.

For the remainder of this section we shall be concerned with constructing
and investigating a proposition system which can be associated in a natural
way with a weak Mackey model. It follows from Axiom 2 that the observable
¥ in Axiom 3 is unique. We shall denote this observable by y = f (x). It also
follows from Axiom 2 that the state m in Axiom 4 is unique, and we denote
it by m=> t;m;. We use the notation m,(E)= p(x,m)(E) and call an
observable x a proposition if m({0,1}) =1 for every m € M. Furthermore,
we denote the set of propositions by L. If g is the characteristic function
of E e B(R), we notice that yg(x) € L for any x € @. Conversely, if x e L,
then x is the characteristic function of an observable; in fact x = x;,(x).
Notice if yg(x) = yz(y) for all E e B(R) then m(E) = p(xe(x),m)({1}) =
plxe(»),m){1}) = m(E) for all me M, E € B(R), and hence x = y. Thus
the map E — yz(x) determines the observable x. (This last fact can be used
to motivate our later definition of an observable on a proposition system.)

Now suppose ae L, me M and m,({1}) =5+ 0. Then for E e B(R) we
have m,(E)is 0, 1, s or 1 — s depending upon whether {1,0}¢ E, {1,0} < E,
leEand 0¢ E, or 0 E and 1 ¢ E, respectively. We thus see that m,(-)
is determined by m ({1}). If we define m(a) = m,({1}) then we obtain a map
m:L — [0,1]. Notice that if m,(a) =m,(a) for all aeL, then m; =m,.
We now define for ay, a, €L, a; < a, if m(a;) <m(a,) for all me M. It is
clear that < is a partial order relation on L. We define the greatest lower
bound a A b and the least upper bound a v b, if they exist, in the usual way.
If fis the identity function f (A} = A on R and a € L, we define the observable
@' by a' = (1 —f)(a). Notice that ¢’ € L and m(a’) = 1 — m(a) for all m € M.

If fy and f; are the functions on R that are identically 0 and 1, respectively,
and x € @, we define the observables 0 and 1 by 0=fy(x) and 1 = fi(x),
respectively. Notice that 0, 1 € L and that 0 and 1 are the unique observable
that satisfy m(0) =0 and m(1) = 1, respectively, for all m e M. We then
have, of course, that 0 <a< 1forallae L.

Lemma 2.1

For all a, b € L the following statements hold. (i) @" =aq; (i) if a < b,
then b’ <da'; (li)av a = 1.
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Proof: Statements (i) and (ii) are obvious. (iif) Certainly a, a’ < 1. Suppose
a,a <band b# 1. Then b’ # 0, and by Axiom 6 there is a state m such
that m(b) =0. Then 0= m(a) =1 — m(a), which is a contradiction. Thus
b=1landava =1

We thus see that L is an orthocomplemented poset. We call the pair
(L, M) the weak logic of the system. A Boolean sub o-algebra B of L is
separable if there is a countable subset D of B such that the smallest Boolean
sub g-algebra containing D is B itself. If a, b € L satisfy a < b’, we say a
and b are disjoint, and write a | b. We say that a Boolean sub o-algebra B
in L is compatible if it is separable and if for any mutually disjoint sequence
(@) < B and m € M we have m(va;) = > m(a;). We will give an example in
Section 6 which shows that a separable Boolean sub os-algebra need not be
compatible. We say that a set P < L is compatible if it is contained in a com-
patible Boolean sub o-algebra of L.If a,b € L are compatible we write a<>b.

To motivate this definition of compatibility, the propositions may be
thought of as corresponding to quantum mechanical events. The compatible
Boolean sub o-algebras correspond to classical probability spaces defined
on some phase space. Conversely, if two propositions a and b are physically
compatible they correspond to noninterfering events. These noninterfering
events interact classically and, hence, should be contained in a classical
probability space.

Since a proposition is physically a statement that the measured value of a
certain observable is in a certain Borel set, the reader might feel that it
would be more appropriate to define compatibility directly in terms of
observables. For instance, one might say that a, b € L are compatible if
there is an observable x € ¢ and Borel sets E, F such that a = xz(x) and
b = y(x). This gives the physically appealing interpretation that a and b
are compatible if, and only if, their validites can be tested by measuring a
single observable. However, this is not an adequate definition for com-
patibility since it may not render compatible certain propositions that
should be. This is because there may not be enough observables in O to
give a rich enough supply of compatible propositions. For example, let %
be the set of real Borel functions on Randlet O ={ f(a):ae L, f € %#}. Then
(0, M) is a weak Mackey model. Let a, b € L be propositions other than 0
or 1. If @ and b are compatible according to this latest definition, there must
be an f(c) € O(c € L), E, F € B(R) such that a = yx( f (c)) and b = x( £ (c)).
Then for every me M,

m(a) = p(a, m)({1}) = p(xe(S (). M) ({1})
= p(f(c), m)(E) = p(c, m) (f~'(E))

We thus see that £ ~!(E) must contain 0 or 1 but not both, and hence, a is
¢ or ¢'. Similarly, b is ¢ or ¢’ and hence, either a=5 or a=>5'. Thus a
proposition a would be compatible only with 0, 1, ¢ and &’. This is clearly
physically unreasonable. More generally, compatibility should not depend
in this way on the number of observables in a quantum mechanical system.
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The converse of the above should hold, however. That is, if a = yg(x) and
b = yp(x) for x € 0, E, Fe B(R), then a and b should be compatible. We
will prove this result in Lemma 2.4.

We are now in a position to offer some justification for abandoning
Axiom 5’ in favor of Axiom 5. Suppose a, b € L and a < b. Physically, this
means that g has a smaller probability of being true than b. The way these
probabilities are determined is by testing the propositions a and b many
times and finding the long-run ratio of the number of times they are true
to the number of times tested. If a < b there seems to be nothing in this
experimental procedure to justify concluding that ¢ and b can be tested
simultaneously with noninterfering experiments, and hence nothing to
justify concluding that g <> b. In fact, we will show that this does not hold
in a system satisfying Segal’s postulates for quantum mechanics. However,
one can prove that if Axiom 5 is assumed instead of Axiom 5, then we
would have a < b implies @ < b.

Now suppose a _|_ b. Again considering the definition of the partial order
in L, there seems to be no good physical reason why a | b should imply
a < b, or even that a v b exists. This gives us our most compelling reason
for not postulating Axiom 5. Indeed, Axiom 5’ is equivalent to each of
the following: if (a;) is a sequence of mutually disjoint propositiens, then
(i) Va, exists; (ii) (g;) is a compatible set in L; (iii) there exists @ € L such
that m(a) = > m(a;) for all m € M. However, we show now that Axiom 5
is equivalent to the following more reasonable statement: If () is a
sequence of mutually disjoint propositions such that there is an x € ¢ and
E, € B(R) with yg(x) = a;, then {a;} is a compatible set in L. For x& @
we call the set {@ € L:a = yg(x) for some E € B(R)} the range of x and
denote it by R(x).

Lemma 2.2
Let (g,) be a sequence of mutually disjoint propositions in the range of an
observable x € @ and suppose yg, (x) =a; fori=1, 2,.... Then
(i) m(E; N Ej) =mlxg,ne, (%)) =0foreveryme M, i #J;
(i) mlxy() = 3 mlys, () = 3 m(@) for all m e M.
Proof: (i) Suppose there is an m € M such that m(yg,ng (X)) # 0, i # j. Then
applying Axiom 6 there is an m; € M such that 1=m(xgng (X)) =
mlx(Ei ﬂ Ej). But then mlx(Ei) = mlx(E,-) == 1 and hence 2 == mlx(E,-) +
myE;) == my(a;) + m;(a)). This contradicts the fact thata; | a;, i #].
(i) mOryz ()
= mx(UEi)
=my[E U (E,—E;NE)U(E;s—(EsNEYU(E;NE)U -]
= x(El) + mx(EZ) - mx(El n EZ) + mx(E3)
—m((E;NE)U(EsNEN+---
It follows from (i) that the negative terms vanish and the lemma follows.



12 S. GUDDER AND S. BOYCE
Lemma 2.3

If (a;) is as in Lemma 2.2, then Vg; exists and is given by y g ,(x).

Proof : Applying Lemma 2.2 (i) we have m(yy (X)) = > m{a;) > m(a,) for
alljand m € M. Now suppose b > a, forall jwhere b € L. Then m(b) > m(a;),
j=1, 2,... and hence p(b,m)({1}) = p(x,m)(E,), p(x,m)(E,). Since by
Lemma 2.2 (i) we have p(x,m)(E,) = p(x,m)(E, — E; 0\ E,), we can apply
Axiom 5 to obtain p(b, m)({1}) = p(x,m)(E)) - p(x,m)(E;).
Now, p(b,m)({1}) > p(x,m)(E, U E,), p(x,m)[E; — (E; N E) N Es], and
hence
3

po,m) ({1 > 3 plx,m)(E)
By induction we obtain

PO Y= 5 plx,m) (E)

In the limit we have

pb,m)({1}) = ; p(x, m) (Ep) = m(xye (%)
and hence b > g (x), which completes the proof.

It follows from the last two lemmas that if (g;) is a mutually disjoint
sequence in the range of an observable, andif m € M, then m(Va)) = > m(a;).
We leave the remainder of the proof of the next lemma to the reader.

’Lemma 2.4

If x € 0, then the range of x is a compatible subset of L.

3. Weak Proposition Systems

Motivated by the considerations of the previous section, we make the
following definitions. Let L be an orthocomplemented poset with first and
last elements denoted by 0 and 1 respectively. Let M be a set of maps
from L into the unit interval [0,1] satisfying: (L1) m(a) =1 — m(a) and
m(l)=1forallme M, acL;(L2) a<bin L if an only if m(a) < m(d) for
all me M; (L3) a+# 0 implies the existence of an me M with m(a)=1;
and (L4) if (m;) < M and

z tl:1
i=1

0<t; <1, there is an me M such that m(a) = #,mfa) for all aeL.
The members of L and M are called propositions and states respectively.
A pair (L, M) satisfying (L1)-(L4) is called a weak proposition system.
We say P < L is compatible in (L, M) if P is contained in a separable Boolean
sub o-algebra B in L such that every state m e M is additive on disjoint
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sequences in B. An observable x on the weak proposition system (L, M)
is a map x:B(R) — L such that (1) x(R) = 1; (02) the range of x, R(x),
is a compatible set in L; (03) EN F= @ implies x(E) 1 x(F); and (04) if
(E) < B(R) is such that E;N E;= @ for i#J, then Vx(E;) = x(UE).
Note that a<»> b in L if and only if ¢ and b are in the range of a single
observable. If x is an observable and fa real valued Borel function, we define
the observable f(x) by f(x)(E) = x(f~YE)) for all Ee B(R). A set of
observables @ on (L, M) is said to be full if (F1) x € 0 implies f (x) € € for
all real Borel functions f; and (F2) if ¢ € L then there is an x € ¢ and
E e B(R) such that a = x(E). Note that every weak proposition system
(L, M) supports at least one full set of observables. Indeed, since the set
{0,a,a’,1} is compatible for every aeL, the map x,:B(R)—>L is an
observable when defined by x,(E) = a, a’, 0 or 1 according to whether 1 ¢ E
but 0¢ E,0cEbut 1¢ £, 0, 1 ¢ E or 0, 1 € E, respectively, and the set
{f(x):aeL, feHB}is full.

Theorem 3.1

Let (L, M) be a weak proposition system and @ a full set of observables
on (L, M). Then (0, M) is a weak Mackey model.

Proof : We indicate how each axiom for a weak Mackey model is justified.
(1) Define p: & x M —.# by plx,m)(E)=m(x(E)), E<B(R). (2) If
plx,m)(E) = p(y,m)(E) for all m € M, E € B(R), then m(x(E)) = m(y(E)),
and using (L2) we have x(E) = y(E) for all Ee B(R). Hence x = . Now
suppose p(x,m)(E) = p(x,m,)(E) for all xe @ and E€ B(R). If acL
then by (£2) there is an x € @ and E € B(R) such that x(E) =a. Hence
m;(a) = my(a) for every a € L and it follows that m,; = m,. (3) This follows
from (F1). (4) M is closed under convex combinations. S) IfE, N E; = &
and  p(y,m)(E) = p(x,m)(E;), p(x,m)(E;) then m(y(E))=> m(x(E})),
m(x(E,)) for all m € M. Thercfore, since M is order determining on L,
Y(E)> x(E)), x(E,), and hence y(E}= x(E) v x(Ey)=x(E, U E,). It
follows that p(y,m)(E) = p(x,m)(E, U E,). (6) If p(x,m)(E)#0, then
m(x(E)) #0, so x(E)#0. Therefore, there is an m; € M such that
1 =m, (x(E)) = p(x,m)(E).

This last theorem and the next one show that a weak Mackey model and
aweak proposition system are equivalent as far as all of the relevant structure
is concerned.

Theorem 3.2

Let (0, M) be a weak Mackey model and (L, M) the associated weak logic.
Then (L, M) is a weak proposition system and there is a one-one map 7
from @ onto a full set of observables @, on (L, M) such that (i) p(x,m)(E) =
m(rx(E)) for all me M, xe 0 and Ee B(R) (i) v/ (x)=f(rx) for all
x € 0 and real Borel functions f. Furthermore, a subset P of L is compatible
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inthe weak logic (L, M) if and only if it is compatible in the weak proposition
system (L, M).

Proof: We have shown that L is an orthocomplemented poset, and it
follows easily from the axioms that M has all the necessary properties for
(L, M) to be a weak proposition system. Now, if x € @ we define rx(E) =
x=(%). To see that vx is an observable on (L, M) note first that by Lemma
2.4 the range of x is a separable Boolean sub o-algebra such that members
of M are additives on disjoint sequences contained in R(x). Therefore,
R(x) = R(rx) is a compatible subset of the weak proposition system (L, M).
It is clear that 7x(R) = yg(x) = 1. Suppose EN F= @. Then E< F' and
by Lemma 2.3 xpAX) = yrrnenue(®) = Xrnedx) v xe(x). It follows from
Lemma 2.2 that m(yg(x)) < m(yrAx)) for all m € M, and therefore,

7X(E) < 7x(F') = xp:(x) = (1 = f) 0 xp(x) = x#(x)" = 7x(F)

where ' (A) = Afor all Ae R. Thus 7x(E) | 7x(F).If E,N E; = @ fori+#}],
then V7x(E;) = Vyg,(x) = xyg,(x) = 7x(UE,), and it follows that Tx is an
observable. The remaining details of the proof are left to the reader

Theorem 3.2 was proved by Mackey (1963) for his stronger model and a
generalization of his theorem was proved by Maczynski (1967).

The reader will notice that we have departed from the usual procedure of
defining propositions to be compatible if they can be split into mutually
disjoint propositions, assuming that countable disjoint suprema exist and
requiring that states be additive on all disjoint sequences. We have rather
taken the set of states M to be a primitive axiomatic concept related to L
in the specified way and then defined compatibility in terms of L and M.
Physically this approach seems justified, since observables and experimental
propositions can only be identified and examined by means of their expecta-
tion values in states which are constructed for the given quantum system.
We shall give an example later of a weak Mackey model which will show
that the usual development given for a partially ordered, orthocomple-
mented set of experimental propositions is not suitable if the correspondence
of Theorem 3.2 is to be preserved.

Let (0, M) be a weak Mackey model and let x € 0. We define the expecta-
tion of x in state m by

m(x) = f Am(dA)

if the integral exists. We say x is bounded if {{m(x)|:m € M} is bounded and
we define the norm of x by (x| =sup{|m(x)|:me M}. We say that an
observable z is the sum of two bounded observables x and y if m(z) =
m(x) + m(y) for all m € M. The sum of two bounded observables need not
exist. Note that if + is the map of Theorem 3.2, then for every x € ¢ and
me M we have m(x)=m(rx). Thus = preserves sums and norms of
observables.
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4, The Segal Model

We now consider the Segal model for quantum mechanics. The observ-
ables are the only undefined axiomatic elements in Segal’s model. We
repeat Segal’s axioms for convenience and completeness. A collection of
objects X is called a system of observables (or system, for short) if X satisfies
the following postulates.

Axiom A

X is a linear space over the real numbers R.

Axiom B

There exists in X an identity element 7 and for every | € X and integer
n > 0 an element {_" € X which satisfies the following: If £, g and 4 are real

polynomials, and if f(g(«)) = h(x) for all € R, then f(g(\U)=4();
where

FU)=Bol+ 3 B
if
F@= 3 puot

Axiom C

There is defined for each observable | a real number }|| || > 0 such that
the pair (X,[|-]]) is a real Banach space.

Axiom D

U2 — V21l < max (U2, 1IV3]) and (U] = JUIR

Axiom E

(UJ? is a continuous function of (.

We do not include Segal’s Axiom 4 since this axiom has been shown to
be redundant by Sherman (1956). A state of X is a real valued linear function
w on X such that w(l?) > 0 for all | € X and w(I)=1. A collection of
states S on X is full if for any two distinct observables |_J, V there is a state
w € S such that w(J) # w(V). Segal (1947) has shown that any system of
observables has a full set of states and that |||l = sup{|w(\U)}: w € S} for
all {J € X. For any two observables | and V the formal product \_J) o V is
defined to be 2[(UJ + V)? ~ (U — V)?]. A system is commutative if the formal
product is associative, distributive (relative to addition) and homogeneous
(relative to scalar multiplication). A collection of observables are said to
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commute or form a commutative collection if the subsystem generated by
the collection is commutative.

Segal (1947) has proved that a commutative system is isomorphic
(algebraically and metrically) with the system C(I") of all real-valued
continuous functions on a compact Hausdorff space I'. The operations in
C(I") are defined in the usual way and the norm is the supremum norm.
It is well known that the states on C(I") consist of the regular Borel
probability measures on I'; that is, if w is a state, then there is a regular
Borel probability measure p on I” such that

w(f) = [ fdu
Ir

forall fe C(I).

An observable | e X is an idempotent if | J*=1). The idempotents
correspond to the propositions in the Mackey model. Certainly the observ-
ables 0 and 7 are idempotents, although there may be no other idempotents
in the system X. Thus unlike the Mackey model in which the idempotents
determine the set of observables, in the Segal model there may be insufficient
idempotents to do this. Nevertheless, let us briefly consider the set of idem-
potents .# in the system X. Since we would like to compare the Mackey and
Segal models, it is of interest to study the structure of J. If a, be . we
define a < b if w(a) < w(b) for every state w. It is easy to show that a < b
if and only if » — a=J? for some | J € X. If a € .# it is natural to define
a=I-—a.

Lemma 4.1

# is an orthocomplemented poset.

Proof : Clearly < is a partial order and 0 < ¢ < T'foralla € .Z. It is also clear
thata” = aand a < bimplies b’ < a' foralla, b € #. Wenowshowav g =1
forallae f. Suppose be S and b > a, a'. Then w(d) > w(a), 1 — w(a) for
all states w. It follows that w(b)> % for all states w. Now the system
generated by b is a commutative system and is thus isomorphic to C(I™)
for some compact Hausdorff space I'. Since b is idempotent, it corresponds
to a characteristic function f on I. Now Segal (1947) has proved that any
state on a subsystem can be extended to a state on the entire system. It
follows that [ f du > % for every regular Borel probability measure p on I,
By considering measures concentrated at points it follows that fis identically
one on I"and hence b= I.

We conjecture that .# is actually a lattice. If S is the set of states on X,
it follows that (£,S) is a weak proposition system.

5. Sherman’s Universal Counterexample

There are two papers of Sherman (1951, 1956) which are of interest to
us here. The first paper gives an improvement on Segal’s (1947) paper and
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the second gives an example of a Segal observable system that is useful for
counterexamples. As mentioned in Section 2, this example will give further
indications of why we must consider weak Mackey models which do not
satisfy Axiom 5'.

Let X = R® and define addition and multiplication by scalars in the usual
way. Let I=(1,1,1) and (/)" = o" I'for n>> 0 an integer. If x = (x, X5, x;) € X,
let ¥=maxx;, x=minx; and let Xy ={xe X:x=1Lx=—1} If xe X,
define x" = x if # is an odd integer, and x" =1 if n is an even integer. If
x € X, then it is easy to see that there is an x, € Xj such that x = ax; + BI,
o, B € R. Define

X" = (axg + I = i (;’) o B 39

Jj=0
It is easy to see that x" is well defined. For x € X we define
llxll = |%] = llextg + BI|| = max {|—o + B, | + B[}

Sherman (1956) has shown that with these operations X is an observable
system. We now consider the set of idempotents .# in X.

Lemma 5.1

If x e X the following statements are equivalent. (i) x € £ ; (i) x =4(xo + 1),
X0 € Xp; (ifl) x = (x;,%5,x;) where x;=1, x;,=0, O<x,<1 for i, j, k
distinct; x == I or x = 0.

Proof: If xeJ, then x=oaxy+ Bl = (axy+ BI)? = (a* + B2) I+ 2aBxo.
If xo=(x;,%2,x3), we have ax; + B=a?+ B2+ 2aBx,;, i=1, 2, 3. Since
x;=1 and x; =—1 for some 7 and j, we have « + B = a? + 82+ 2B and
—o+ 8= a? + B2 — 20. It follows that B =} and & = +%. The lemma then
follows.

It is easy to see that the order in .# is pointwise order; that is, x < y if
x; < ;. Also itis easy to show that .# is a lattice and hence applying Lemma
4.1, .Z is an orthocomplemented lattice.

Now it is reasonable to expect that in any structure preserving Mackey-
type formulation for X, .# can be embedded in a structure preserving way
in the associated proposition system. Thus by examining .# we can get some
indication of what is necessary in such a proposition system. We now give
an example and a result which show that if the natural structure of .# is
to be preserved, then the Mackey model into which X is embedded cannot
satisfy Axiom 5'.

We first give an example of two idempotents a, b in .# such that a < b
and yet a and b are not in a Boolean sub c-algebra of .#. We do this by
showing that the orthomodular identity b =a v (b A a’) does not hold.
This will also show that .# is not an orthomodular lattice. Let a = (1,4,0)
and b =(1,1,0). Then a<b. However, av (b A @) =(1,4,0) v [(1,1,0) A
0,4, D1=(1,%,0) v (0,0,0) = (1,3,0) # b. As was noted in Section 2, if
# is embedded in a Mackey model satisfying Axiom 5, then a < b implies
a<>b.

2
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It is desirable that the two idempotents of this example exist as incom-
patible propositions in any Mackey-type logic used to reformulate the
structure of X, for we can also show that as idempotents in X, @ and b do
not commute. We do this by showing 2(a o b) # (24) o b. Indeed, since
a=3(1,0,-1)+ 1l and b=1(1,2,—-1)+ 41, we have a+b=(1,3,~-1)+1
and a— b=%(1,—-1,1) — 11, and hence
2Aa o b) =1[(a+b)* — (a—bP1=1[(4,3,0)— (0,1, 0)] = (2, %5, 0)
Similarly, 2a + b =3(1,3,~1) + 31, 2a— b=13(1,-1,—-1) + I, and hence
(2a) 0 b =}[(2a + b)* — (2a - b)*] = 4[(9,6,0) — (1,0,0)] = (2,3, 0)

The next theorem gives further evidence that Axiom 5 is not acceptable
for our purposes.

Theorem 5.1

There is no map m:.# — [0,1] with m(I) =1 which is additive on all
finite disjoint sequences in .#.

Proof : Suppose there is such an m. Then 1 =m(l)=m(Ve,)) = > mle,),
where e; is that member of .# with 1 in the i{th entry and O elsewhere.
Without loss of generality suppose mf(e;) #0. Let o« € R be such that
0 <« < 1and consider (0,1, ). Notethate; | (0,1,0)ande; v (0,1,a) = 1.
Therefore, m((0,1,)") =1 — m(0,1,x) = m(e,). Also, m((0,1,x)") = m((1,0,
1— o)) =1—mle,) since (1,0,1 — ) | e, and (1,0,1 — &) v e, = 1. Thus
m(e;) = 1 — mfe,) or m(e,) + m(e,} =1 and it follows that m(e;) = 0. If we
replace (0,1, ) by (0, «, 1), exactly the same argument shows that m(e,) = 0.
1t follows, therefore, that m(e,) = 1. But this leads to a contradiction. For
again, suppose 0 <o <. Then m(e,1,0)=1, since (e, 1,0) | e; and
(,1,0) v e; =1, while m(e,) = 1 implies m(e;) = 0. Therefore, m((«, 1,0)") =
0. However, we also have that m((«, 1,0)) = m(1 — «,0,1) =1 —m(0,1,0) =
1, since m(ey) =0, (1 — «,0,1) 1 e;and (1 — ,0,1) ve, = 1.

6. Embedding the Segal Model in a Weak Mackey Model

In this section we consider the problem of embedding any Segal system
in a weak Mackey model.

Theorem 6.1

Let X be a Segal system and S its set of states. Then there exists a weak
Mackey model (0,S), and a one-one map 7:X — (0 which satisfies the
following conditions: (i) 7p(x) = pr(x) if p is a polynomial; (ii) w(x)=
w(x); (i) 7(x +y)=7rx+7p; and (V) ||Ix||=[rx| for every x, ye X,
weS.

Proof: Let O, be the set of formal expressions of the form f(4), where 4 is
a commutative subset of X and f is a Borel function on /1, the compact
Hausdorff space such that C(4) is isometrically isomorphic to the sub-
system X (A) of X generated by A. Let .# be the set of probability measures
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on the Borel sets B(R) of R and define py: Oy x S~ A by po( f(4),w)(E)=
P, s(fTHE)) for all E € B(R) where y,, 4 is the regular probability measure
on /A corresponding to w. If po(f(A4),w)(E) = pe(g(B),w)(E) for all
w € S, Ee€ B(R), write f{4) ~ g(B). It is clear that =~ is an equivalence
relation. Let @ be the set of equivalence classes and denote the equivalence
class containing f (4) by [ f(4)]. Define 7: X — O by vx = [x]. If 7x; = x5,
then x; & X, and p,, ,, = L, x, for all w € S. We then obtain w(x;) = w(x,)
for all we S and since S is full, x; = x,. Hence 7 is one-one. Define
p:0x S~ M by p([ f(ADLw)(E)=py (f(E)) for all Ee B(R). Notice
that p is well defined. We now check the six axioms to show (&, S) is a weak
Mackey model. Axiom 1 holds by construction, and Axioms 2 and 4 are
easily seen to hold. For [f(4)] € @ and real Borel function g note that

p(g o f (D], ) (E) = o, a(g 0 f)HE)) = ptoo, a(f (&7 HED)
=p([f (A)], ) (7 (E)) = p(gLf (A)], ) (E)

Therefore, Axiom 3 is satisfied and g[ f (4)]=[g o f(A)]. (6) If p([ £ (4)],
w)(E) #0, then p,, 4(fYE))#0. Let A be a point in f~!(E) and let u,
be the probability measure concentrated at A. Then p, generates a state on
X(4) and by Theorem 4 Segal (1947) (Sherman, 1951, also needed) this
state has extension w, to X. Since ux(f "W EN =1, p([f (D], w))(E) = 1.
(5) Suppose E;, E;eB(R) and E,NE,= . Assume x, ye @ and
p(r, ) (E) = p(x, w)(E)), p(x,w)(E;) for every weS. Without loss of
generality we may assume that x, y€ X. Let w be a pure state in X(x).
Then, since p,,, . I8 concentrated at a point, we have p(x,w)(E, U E;) =
plx,w)(E,) + p(x,w)(E,), where the right-hand side must equal p(x, w)(E,)
or p(x,w)(E,). Now again by Theorem 4 Segal (1947), w has an extension
to X and we have p(y,w)(E) > p(x,w)(E; U E,). Since this inequality is
preserved under convex combinations and weak limits, it follows from
Segal (1947, p. 940) that p(y,w)(E) = p(x,w)(E, U E,) for all w € S, It is
straightforward to show that 7 satisfies conditions (i)~(iv) and this is left
to the reader. It is also easily seen that (iii) and (iv) follow from (ii).

This last theorem shows that all of the algebraic and metric structure of
a Segal system can be recovered in a weak Mackey model.

Corollary 6.2

If .# is the set of idempotents in X and (L, S) the weak logic associated
with (0,8), then fora, be # () a<bin £ if and only if ra < 7bin (L, S),
and (ii) 7(@") = (ra)'.

Corollary 6.3
If x and y are commutative in X, then R(rx) U R(ry) is a compatible set
in the weak logic (L, S) (where R(rx) and R(ry) are as in Section 2).

Proof: Since x and y commute, there is a compact Hausdorff space 4 such
that C(A) is isometrically isomorphic to X(x,y). Let f', g’ € C(A) be such
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that [f'(x,»)]=[x] and [g'(x,»)]=[»]. It is well known that there are
real Borel functions 4 on /A and fand g on R such that f'=foh and
g’ =goh. Therefore, [foh(x,)]=f[h(x,y)]=1[x] and [goh(x,y)]=
glh(x,y)] = [y]. Tt now follows that R{(rx)U R(7y) < R([A(x,y)]), and
Lemma 2.4 implies the corollary.

If (X, S)is a Segal system, we call a triple (0, S, 7) satisfying the conditions
in Theorem 6.1 a Mackey realization of (X, S). If (U,, §) and (0,, S) are weak
Mackey models, we say that (0, S) can be embedded in (0,, S) if there is a
one-one map 6:0, — 0, such that (i) 8f(x)=,(dx) for all fe #; (i)
p(6x,w)(+) = p(x,w)() for all (x,w) € (¢,,S). We say that (0,, S,7;) is a
minimal Mackey realization of (X, S) if (O, S, 7o) can be embedded in any
Mackey realization of (X, S).

Theorem 6.4
Any Segal system (X,.S) has a minimal Mackey realization (0, S, 7p).

Proof: The first part of the proof is similar to the proof of Theorem 6.1.
We define Oy ={[f(X)]:xec X,feH}, and 7¢: X - O by rox=[x]. It
follows, as in Theorem 6.1, that (0, S, 7,) is a Mackey realization of (X, .5).
Suppose now that (¢, S,7,) is some Mackey realization of (X, S). Define
3:0y — 0, by 8[ f (x)] =f (v, x). We first show that § is well defined. Now,
it follows from (ii) of Theorem 6.1 that x — w(x) and x — w(7,; x) define
the same positive linear functionals and so using the uniqueness of the
Riesz representation theorem p(7,x,w)(E)=p, (E) for all we M,
E € B(R). Hence, if f (x) = g(y) we have

2(f (71 X), @) (B) = pix, o(f “HE)) = pty, (&7 E)) = p(2(71 ¥), w) (E)

Therefore f(ryx) = g(,») and 8 is well defined. We now prove properties,
(i) and (ii) for an embedding. If x € O, then x = [g(»)] for some ge %
ye X

() 8/ (x) =8 (gD =8[f o g =f 0 g(r1¥)=f(g(r1¥))
=f(8[g()]) =/ (6x);
(i) p(8x, w)(E) = pBlg(»)], @) (E) = p(g(r, ), ») (E)
= p(1 5, 0) (71 (E)) = iy, (87" (E))
=p([g(»)], w) (E) = p(x, w) (E).

The main disadvantage of the minimal Mackey realization (0, S, o) is
that Corollary 6.3 does not hold, in general, for it.

We now give the example promised in Section 3 to provide justification
for our departure from the usual structure given for a system of experimental
propositions, Let X be Sherman’s example of a Segal system given in
Section 5, and let S be its set of states. It follows easily from the proof of



A COMPARISON OF THE MACKEY AND SEGAL MODELS 21

Theorem 6.1 that when p: X x S — .# is defined by p(x,w)(E) = u,, ,(E)
forall E€ B(R), (X, S)is a weak Mackey model and (.#, §) is its weak logic.

First we give an example to show that compatibility in (#,.S) should
not be defined in terms of either splitting into disjoint propositions or
generating a Boolean sub o-algebra. Let a=(1,0,0) and b = (0,1,0). It is
clear that @ | b and that g and b generate the eight-element Boolean sub
o-algebra {0, (1,0,0), (0,1,0), (0,0, 1), (0,1,1), (1,0, 1), (1,1,0), I}. However,
as idempotent observables in X, a and & do not commute. This follows by
noting that X (a,b) = X and that X is not commutative. Thus if the notion
of ‘noninterference’ embodied in X is to be preserved in (£, S), the usual
definition of compatibility is not adequate.

Finally, note that the requirement that states on .# be additive on all
finite, disjoint sequences is too strong. Indeed, Theorem 5.1 shows that
there are no such states on .#.
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