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1. Introduction 

Mackey (1963) and Segal (1947) have constructed two elegant and quite 
general models for quantum mechanics. These two models are not equiva- 
lent, yet both have led to fruitful results and a deeper understanding of 
quantum theory. Mackey's work has led to the 'quantum logic' approach 
which has been carried on by many investigators [for some of these the 
reader might refer to the bibliographies in Jauch (1968) and Varadarajan 
(1968)], while Segal's approach is the forerunner of the important C*- 
algebra theory of quantum mechanics (e.g., Haag & Kastler, 1964; Segal, 
1963). As important as these two models are, very little research seems to 
have been performed comparing the two. The only works known to the 
author along these lines are those of Plymen (1967, 1968) and Davies (1968), 
who have shown that a C*-algebra can be embedded in a Z*-algebra. 
The C*-algebra corresponds to the Segal model, and Plymen shows that 
the Z*-algebra satisfies the postulates of Mackey's model. However, a 
C*-algebra is much stronger than Segal's original model, and Segal, 
himself, admits that the distributive and associative laws required in a 
C*-algebra are physically very artificial. Also, the Z*-algebra cannot be 
physically justified and is much stronger than the general structure given 
by what Plymen calls 'Mackey's essential axioms'. In this paper we consider 
Segal's original model and a generalization of Mackey's model which we 
feel is physically more reasonable. We then show that the Segal model can 
be embedded in the Mackey model in a structure-preserving way. This 
generalizes Plymen's results and shows that Segal's original model can be 
extended to a Mackey-type model. 

2. The Maekey Model 

We first give a formulation of Mackey's model. Let @ = {x,y,z .... } and 
M = {m, m~, m2 .... } be non-empty collections of objects called observables 
and states, respectively, and let ~ '  denote the set of probability measures 
on the Borel sets B(R) of the real line R. 
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Axiom 1 

There is a m a p p :  (9 • M -+ ~ '  denoted byp(x,m)( . ) .  

Axiom 2 

I f  p(x,m)(E) =p(y ,m)(E)  for every m E M, E e B(R), then x = y .  If  
p(x, ml)(E) = p(x, mz)(E) for every x ~ (9, E ~ B(R), then ml = mz. 

Axiom 3 

I f  x ~ (9 a n d f i s  a real-valued Borel function on R, then there is a y E (9 
such that p(y ,m)(E) = p ( x , m ) ( f  -l(E)) for every m E M, E ~ B(R). 

Axiom 4 

I f  ~ 3  

m x , m z , . . . ~ M  and ~ t i = l , 0 < ~ t ~ <  1 
i = 1  

then there is an m e M such that  p(x ,m)(E)= ~ t~p(x,m~)(E) for all 
x E (9, E e B(R). 

Axiom 5 

f f  El, E2 ~ B(R) are disjoint, y and x E (9, and p(y, m) (E) >~ p(x, m) (EO, 
p(x, m) (E2) for every m e M, then p(y, m) (E) >~ p(x, m) (El U E2) for every 
m e M .  

Axiom 6 

I f  there is an m e M such that  p(x,m)(E) ~ 0, then there is an ml e M 
such that p(x, ml)(E ) = 1. 

We call a pair ((9, M)  satisfying the above six axioms a weak Mackey 
model. Axioms 1, 2, 3, 4 and 6 are identical to Mackey 's  Axioms I, II, I I I ,  
IV and V I I I  respectively. Axiom 5 is weaker than Mackey 's  Axiom V, 
which can be expressed in this context as follows: 

Axiom 5' 

I f  xl, x2 . . . .  and El,  Ez, . . .  are members of  (9 and B(R), respectively, that  
satisfy p(x~, m)(E~) + p(x s, m)(Es) ~< 1 for all m ~ M, i S  j, then there exists 
a y ~ 0, F E B(R) such that p(y,m)(F) = ~ p(xl,m)(E~) for all m ~ M. 

To show Axioms 1 and 5' imply Axiom 5, suppose x, y, E, E1 and Ea 
satisfy the hypotheses o f  Axiom 5. We denote the complement  of  a set E 
b y E ' .  Sincep(y,m)(E') = 1 - p(y,m)(E) <~ 1 - p(x,m)(E1), 1 - p(x,m)(E2) 
we have p(y,m)(E')  + p(x,m)(E1) < 1 and p(y,m)(E')  + p(x,m)(E2) <<. 1. 
Applying Axiom 5', there is a Yi E (9, F E B(R) such that  

1 >~p(yl,m)(F) =p(y ,m)(E ' )  +p(x,m)(E1) +p(x,m)(E2) for all m ~ M. 
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But this can be rewritten 1 ~> 1 - p(y, m) (E) + p(x,m) (El U Ez), which 
gives Axiom 5. We will give reasons later why we postulate the weaker 
Axiom 5 instead of  Axiom 5'. 

Notice that  Mackey 's  Axiom VII,  which postulates that  the proposi t ion 
system of  quantum mechanics is isomorphic to the lattice of  all closed 
subspaces o f a  Hilbert space, is not  used here. This is because of  the 'ad hoc '  
nature of  this axiom. Of  the six axioms we have given, Axioms 1, 2 and 5 
are the most  important ,  since it is these that give the structure of  the 
proposi t ion system that  we shall construct. The other axioms can be 
dispensed with or  weakened in various ways to get a more general theory. 
However,  we shall retain them because they are useful in other contexts and 
because they can be physically justified. 

For  the remainder o f  this section we shall be concerned with constructing 
and investigating a proposi t ion system which can be associated in a natural 
way  with a weak Mackey model. I t  follows f rom Axiom 2 that  the observable 
y in Axiom 3 is unique. We shall denote this observable by y = f ( x ) .  It  also 
follows f rom Axiom 2 that  the state m in Axiom 4 is unique, and we denote 
it by  m = ~ timt. We use the notat ion mx(E)=p(x ,m) (E)  and call an 
observable x a proposition if rex({0, I}) = 1 for every m e M. Furthermore,  
we denote the set o f  proposit ions by L. I f  XE is the characteristic function 
of  E e B(R), we notice that  XE(x) e L for any x e (9. Conversely, if x e L, 
then x is the characteristic function o f  an observable; in fact x = X~1~(x). 
Notice if XE(x)= XE(Y) for  all E e B(R) then m~(E)=p(xE(x),m)({1})= 
p(x~(y),m)({1}) = my(E) for all m e M, E e B(R), and hence x = y .  Thus 
the map E -+ X~(X) determines the observable x. (This last fact can be used 
to motivate our  later definition of  an observable on a proposi t ion system.) 

N o w  suppose a e L, m e M and ma({1}) = s r 0. Then for E e B(R) we 
have ma(E) is 0, 1, s or 1 - s depending upon  whether {1,0}r E, {1,0} c E, 
1 e E and 0 r E, or 0 e E and 1 ~ E, respectively. We thus see that  m,( . )  
is determined by ma({1}). I f  we define re(a) = m,({1}) then we obtain a map 
m : L - +  [0,1]. Notice that  if ml(a)=mz(a) for all a e L ,  then ml = m z .  
We now define for  al, a2 e L, al ~< a2 if m(al) < m(a2) for  all m e M. It  is 
clear that  < is a partial order relation on L. We define the greatest lower 
bound a ^ b and the least upper bound  a v b, if they exist, in the usual way. 
I f f i s  the identity f u n c t i o n f  (A) = A on R and a ~ L, we define the observable 
a '  by a '  = (1 - f ) ( a ) .  Notice that  a '  e L and m(a') = l - m(a) for all m e M. 

I f  f0 and f l  are the functions on R that  are identically 0 and 1, respectively, 
and x e d), we define the observables 0 and 1 by 0 =f0(x)  and 1 = f l (x ) ,  
respectively. Notice that  0, 1 e L and that  0 and 1 are the unique observable 
that  satisfy m(0) = 0 and m(1) = 1, respectively, for  all m e M. We then 
have, of  course, that  0 < a ~< 1 for all a E L. 

Lemma 2.1 

For  all a, b e L  the following statements hold. (i) a"= a; (ii) if a~< b, 
then b'  ~ a ' ;  (iii) a v a '  = 1. 
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Proof: Statements (i) and (ii) are obvious. (iii) Certainly a, a' < 1. Suppose 
a, a' < b and b # 1. Then b' # 0, and by Axiom 6 there is a state m such 
that re(b)= 0. Then 0 = re(a)= 1 -re(a), which is a contradiction. Thus 
b= l andav  a'= l. 

We thus see that L is an orthocomplemented poser. We call the pair 
(L,M) the weak logic of the system. A Boolean sub or-algebra B of L is 
separable if there is a countable subset D of B such that the smallest Boolean 
sub e-algebra containing D is B itself. If a, b ~ L satisfy a < b', we say a 
and b are disjoint, and write a .L b. We say that a Boolean sub e-algebra B 
in L is compatible if it is separable and if for any mutually disjoint sequence 
(at) ~ B and m e M we have m(va~) = ~ m(a~). We will give an example in 
Section 6 which shows that a separable Boolean sub ~r-algebra need not be 
compatible. We say that a set P _ L is compatible if it is contained in a com- 
patible Boolean sub e-algebra of L. If a, b E L are compatible we write a~--~ b. 

To motivate this definition of compatibility, the propositions may be 
thought of as corresponding to quantum mechanical events. The compatible 
Boolean sub e-algebras correspond to classical probability spaces defined 
on some phase space. Conversely, if two propositions a and b are physically 
compatible they correspond to noninterfering events. These noninterfering 
events interact classically and, hence, should be contained in a classical 
probability space. 

Since a proposition is physically a statement that the measured value of a 
certain observable is in a certain Borel set, the reader might feel that it 
would be more appropriate to define compatibility directly in terms of 
observables. For instance, one might say that a, b ~ L are compatible if 
there is an observable x ~ 0 and Borel sets E, F such that a = X~(X) and 
b = Xr(x). This gives the physically appealing interpretation that a and b 
are compatible if, and only if, their validites can be tested by measuring a 
single observable. However, this is not an adequate definition for com- 
patibility since it may not render compatible certain propositions that 
should be. This is because there may not be enough observables in d~ to 
give a rich enough supply of compatible propositions. For example, let 
be the set of real Borel functions on R and let (9 = {f(a):a ~ L, f E  ~}. Then 
(O, M) is a weak Mackey model. Let a, b E L be propositions other than 0 
or 1. If  a and b are compatible according to this latest definition, there must 
be a n f ( e )  ~ O(e ~ L), E, F E B(R) such that a = •E(f (c)) and b = ~e( f  (c)). 
Then for every m ~ M, 

m(a) = p(a, m) ({1}) = p(xE(f (c)), m) ({1}) 

= p(f(c), m) (E) = p(c, m) (f- ' (E)) 

We thus see t h a t f - l ( E )  must contain 0 or 1 but not both, and hence, a is 
c or c'. Similarly, b is c or c' and hence, either a = b or a = b'. Thus a 
proposition a would be compatible only with O, 1, a and a'. This is clearly 
physically unreasonable. More generally, compatibility should not depend 
in this way on the number of observables in a quantum mechanical system. 
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The converse of  the above should hold, however. That  is, if a = X~(X) and 
b = XF(x) for x ~ •, E, FE B(R), then a and b should be compatible. We 
will prove this result in Lemma 2.4. 

We are now in a position to offer some justification for abandoning 
Axiom 5' in favor of  Axiom 5. Suppose a, b e L and a < b. Physically, this 
means that a has a smaller probability of  being true than b. The way these 
probabilities are determined is by testing the propositions a and b many 
times and finding the long-run ratio of  the number of  times they are true 
to the number of  times tested. I f  a < b there seems to be nothing in this 
experimental procedure to justify concluding that a and b can be tested 
simultaneously with noninterfering experiments, and hence nothing to 
justify concluding that a ~-~ b. In fact, we will show that this does not hold 
in a system satisfying Segal's postulates for quantum mechanics. However, 
one can prove that  if Axiom 5' is assumed instead of Axiom 5, then we 
would have a < b implies a +-+ b. 

Now suppose a _1_ b. Again considering the definition of the partial order 
in L, there seems to be no good physical reason why a I b should imply 
a ~ b, or even that a v b exists. This gives us our most compelling reason 
for not postulating Axiom 5'. Indeed, Axiom 5' is equivalent to each of 
the following: if (a,) is a sequence of mutually disjoint propositions, then 
(i) Va, exists; (ii) (a,) is a compatible set in L;  (iii) there exists a ~ L such 
that m(a) = ~ m(al) for all m ~ M. However, we show now that Axiom 5 
is equivalent to the following more reasonable statement: I f  (a~) is a 
sequence of mutually disjoint propositions such that there is an x ~ 0 and 
El ~ B(R) with XE(x) = ai, then {a,} is a compatible set in L. For  x E r 
we call the set { a e L : a = x E ( x  ) for some E ~ B ( R ) }  the range of x and 
denote it by R(x). 

Lemma 2.2 
Let (a~) be a sequence of mutually disjoint propositions in the range of an 

observable x ~ O and suppose XEf (x) = a~ for i = 1, 2 . . . . .  Then 

(i) mx(Ei FI Ej) = m(XEdlE~(X)) = 0 for every m ~ M, i # j ;  

(ii) m(Xug~(x)) = Y. m(xr~ (x)) = ~ m(a,) for all m ~ M. 

Proof: (i) Suppose there is an m E M such that m(XE~ng .(x)) ~ O, i Cj.  Then 
applying Axiom 6 there is an m~ ~ M  such that "1 =ml (x~nEj (x ) )=  
ml~(E~ 71 Ej). But then mlx(E~) = ml~(Ej) = 1 and hence 2 = ml~(Ei) + 
m~(Ej)  --- mx(at) + rn~(aj). This contradicts the fact that a~ l aj, i g=j. 

(ii) m(XUE,(X)) 

= m . ( U E 3  

= rn~[E~ U (E2 - E, 71 E2) U (E 3 - (E a 71 E~) U (E 3 FI E2)) U ' "  "] 

= rnx(El) + m~(E2) - mx(E1 71 Ez) + m~(E3) 

-- mx((E 3 0 Ez) U (E 3 71 El)) + " "  

It  follows from (i) that the negative terms vanish and the lemma follows. 
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Lemma 2.3 

I f  (a~) is as in Lemma 2.2, then Va~ exists and is given by XuE,(x). 

Proof: Applying Lemma 2.2 (ii) we have m(Xu~,(x)) = ~ m(a~) >~ m(aj) for 
allj  and m ~ M. Now suppose b ~> aj for allj  where b ~ L. Then m(b) >~ m(aj), 
j =  1, 2 . . . .  and hence p(b,m)({1})>~p(x,m)(E1), p(x,m)(Ez). Since by 
Lemma 2.2 (i) we have p(x,m)(E2)=p(x,m)(E2- E1 N Ez), we can apply 
Axiom 5 to obtain p(b, m) ({1}) >~ p(x, m) (El) + p(x, m) (Ez). 

Now, p(b,m)({l}) >~ p(x,m)(E1 U E2), p(x,m)[E3 - (El N E2) Cl E3] , and 
hence 

3 

p(b, m) ({1}) >~ ~ p(x, m) (E,) 
. t = l  

By induction we obtain 

p(b, m) ({1}) >~ ~ p(x, m) (E~) 
i = 1  

In the limit we have 

p(b, m) ({1}) ~> ~ p(x, m) (E,) = m(xuE,(x ) 
i = 1  

and hence b >~ Xu~,(x), which completes the proof. 

It  follows from the last two lemmas that if (ai) is a mutually disjoint 
sequence in the range of an observable, and i fm ~ M, then m(Va~) = Z m(a~). 
We leave the remainder of the proof  of the next lemma to the reader. 

Lemma 2.4 

I f  x e 6, then the range of x is a compatible subset of L. 

3. Weak Proposition Systems 

Motivated by the considerations of the previous section, we make the 
following definitions. Let L be an orthocomplemented poset with first and 
last elements denoted by 0 and 1 respectively. Let M be a set of maps 
from L into the unit interval [0,1] satisfying: (L1) m(a')= 1 -m(a)  and 
m(1) = 1 for all m ~ M, a E L; (L2) a < b in L if an only if m(a) < m(b) for 
all m E M; (L3) a v a 0 implies the existence of an m E M with m(a) = 1 ; 
and (L4) if (mi) c M and 

~ti=l 
i = l  

0 ~ tl ~ 1, there is an m E M such that re(a)= ~ tim~(a) for all a eL.  
The members of L and M are called propositions and states respectively. 
A pair (L ,M)  satisfying (L1)-(L4) is called a weak proposition system. 
We say P c L is eompatible in (L, M) i fP  is contained in a separable Boolean 
sub cT-algebra B in L such that every state m e M is additive on disjoint 
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sequences in B. An observable x on the weak proposition system (L,M)  
is a map x:B(R) -+L such that ((91) x(R) = 1; (02) the range of x, R(x), 
is a compatible set in L;  ((93) E A F =  ~ implies x(E) .J_ x(F);  and ((94) if 
(Ei) ~-B(R) is such that E~ (~ Ej = ;~ for i r  then Vx(E~)=x(OE~). 
Note that a +-+ b in L if and only if a and b are in the range of a single 
observable. I f  x is an observable a n d f a  real valued Borel function, we define 
the observable f ( x )  by f ( x ) (E )=x ( f -~ (E) )  for all E E B(R). A set of  
observables (9 on (L,M) is said to be full if (F1) x c (9 implies f ( x )  e (9 for 
all real Borel functions f ;  and (F2) if a e L then there is an x e (9 and 
E ~ B(R) such that a = x(E). Note that every weak proposition system 
(L,M)  supports at least one full set of observables. Indeed, since the set 
{0,a,a ' , l} is compatible for every a e L ,  the map x , :B(R) -+L is an 
observable when defined by x,(E) = a, a', 0 or 1 according to whether 1 c E 
but 0 ~ E, 0 e E but 1 ~ E, 0, 1 r E or 0, 1 E E, respectively, and the set 
{f(xa):a eL ,  f e d }  is full. 

Theorem 3.1 

Let (L,M) be a weak proposition system and (9 a full set of observables 
on (L, M). Then (0, M) is a weak Mackey model. 

Proof: We indicate how each axiom for a weak Mackey model is justified. 
(1) Define p : ( g x M - + ~ g  by p(x,m)(E)=m(x(E)), E~B(R) .  (2) I f  
p(x,m)(E) =p(y,m)(E) for all m ~ M, E E B(R), then m(x(E)) = m(y(E)), 
and using (L2) we have x(E) = y(E) for all E ~ B(R). Hence x = y. Now 
suppose p(x, ml)(E)=p(x,  mz)(E) for all x c ( 9  and EEB(R).  If a ~ L  
then by (F2) there is an x ~ (9 and E ~ B(R) such that x(E)= a. Hence 
ml(a) = m2(a) for every a ~ L and it follows that ml = m2. (3) This follows 
f rom (F1). (4) M is closed under convex combinations. (5) I f  El N E2 = ;~ 
and p(y,m)(E) >~p(x,m)(El), p(x,m)(E2) then m(y(E))>~m(x(E1)), 
m(x(E2)) for all m ~ M. Therefore, since M is order determining on L, 
y(E) >~ x(E1), x(E2), and hence y(E) >~ x(El) v x(Ez) = x(E1 U E2). It  
follows that p(y,m) (E) ~ p(x, m) (El U E2). (6) I f  p(x,m) (E) # O, then 
m(x(E)) r  so x (E)r  Therefore, there is an ml e M such that 
1 = ml (x (E) )  = p(x ,  ml)  (E).  

This last theorem and the next one show that a weak Mackey model and 
a weak proposition system are equivalent as far as all of the relevant structure 
is concerned. 

Theorem 3.2 

Let ((9, M)  be a weak Mackey model and (L, M)  the associated weak logic. 
Then (L,M) is a weak proposition system and there is a one-one map ~- 
from (9 onto a full set of  observables (91 on (L, M)  such that (i)p(x, m)(E) = 
m(zx(E)) for all m E M, x ~ (9 and E~ B(R) (ii) zf(x)=f(~-x)  for all 
x ~ (9 and real Borel func t ionsf  Furthermore, a subset P of  L is compatible 
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in the weak logic (L, M) if and only if it is compatible in the weak proposition 
system (L, M). 

Proof: We have shown that L is an orthocomplemented poset, and it 
follows easily from the axioms that M has all the necessary properties for 
(L, M) to be a weak proposition system. Now, if x e (_9 we define "rx(E) = 
XE(X)- To see that rx  is an observable on (L, M) note first that by Lemma 
2.4 the range of x is a separable Boolean sub e-algebra such that members 
of M are additives on disjoint sequences contained in R(x). Therefore, 
R(x) = R(rx)  is a compatible subset of the weak proposition system (L, M). 
It is clear that rx(R)  = XR(x) = I. Suppose E f l  F = ~ .  Then E c F'  and 
by Lemma 2.3 XF,(x) = X(v,n~,)uE(x) = Xv,nE,(x) v XE(x). It follows from 
Lemma 2.2 that m(xE(x)) < m(xv,(x)) for all m ~ M, and therefore, 

zx (E)  <~ -rx(F') = Xv,(x) = (1 - f )  o XF(x) = Xr(X)' = "cx(F)' 

where f 0 0  = A for all h e R. Thus zx (E)  _L ,cx(F). IfE~ f3 Ej = ~ for i C j, 
then Vrx(E~) = VXE,(x ) = XuE~(x) = rx(UE~), and it follows that rx  is an 
observable. The remaining details of the proof are left to the reader 

Theorem 3.2 was proved by Mackey (1963) for his stronger model and a 
generalization of his theorem was proved by Maczynski (1967). 

The reader will notice that we have departed from the usual procedure of 
defining propositions to be compatible if they can be split into mutually 
disjoint propositions, assuming that countable disjoint suprema exist and 
requiring that states be additive on all disjoint sequences. We have rather 
taken the set of states M to be a primitive axiomatic concept related to L 
in the specified way and then defined compatibility in terms of L and M. 
Physically this approach seems justified, since observables and experimental 
propositions can only be identified and examined by means of their expecta- 
tion values in states which are constructed for the given quantum system. 
We shall give an example later of a weak Mackey model which will show 
that the usual development given for a partially ordered, orthocomple- 
mented set of experimental propositions is not suitable if the correspondence 
of Theorem 3.2 is to be preserved. 

Let (d), M) be a weak Mackey model and let x e (r We define the expecta- 
tion of x in state m by 

re(x) = t ;~mx(dA) 
R 

if the integral exists. We say x is bounded if {[m(x)] : m ~ M} is bounded and 
we define the norm of x by Ixl = sup{[m(x)l:m e M}. We say that an 
observable z is the sum of two bounded observables x and y if re(z) = 
re(x) + m(y)  for all m e M. The sum of two bounded observables need not 
exist. Note that if ~- is the map of Theorem 3.2, then for every x e 0 and 
m e M we have re(x)= m(-cx). Thus ~- preserves sums and norms of 
observables. 
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4. The Segal Model 

We now consider the Segal model for quantum mechanics. The observ- 
ables are the only undefined axiomatic elements in Segal's model. We 
repeat Segal's axioms for convenience and completeness. A collection of 
objects Xis  called a system of observables (or system, for short)if Xsatisfies 
the following postulates. 

Axiom A 

i" is a linear space over the real numbers R. 

Axiom B 

There exists in X an identity element I and for every U e X and integer 
n .>> 0 an element U" e X which satisfies the following: I f  f ,  g and h are real 
polynomials, and i f f (g (~ ) )=h(~)  for all ~ ~R,  then f ( g ( U ) ) = h ( U ) ;  
where 

f ( U ) = f l o I +  ~ f lkU k 

if 

f ( a )  = ~ /3k= ~ 
k=O 

Axiom C 

There is defined for each observable U a real number HUll > 0 such that 
the pair (X, []-[I) is a real Banach space. 

Axiom D 

I ] U  2 - -  V2 [ I - ~  max (IIU2II, I1VZll) and IIU2[[ = IIUII 2. 

Axiom E 

U z is a continuous function of U.  

We do not include Segal's Axiom 4 since this axiom has been shown to 
be redundant by Sherman (1956). A state of Xis a real valued linear function 
co on X such that co(U 2) > 0 for all U e X and co(I) = 1. A collection of 
states S on X is full if for any two distinct observables U,  V there is a state 
co ~ S such that co(U) ~ co(V). Segal (1947) has shown that any system of 
observables has a full set of  states and that IIU[] = sup{Ico(U)[ :co e S} for 
all U e X. For any two observables U and V theformalproduct U o V is 
defined to be �88 + V) 2 - ( U  - v)2] �9 A systemis commutative if the formal 
product is associative, distributive (relative to addition) and homogeneous 
(relative to scalar multiplication). A collection of observables are said to 
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commute or form a commutative collection if the subsystem generated by 
the collection is commutative. 

Segal (1947) has proved that a commutative system is isomorphic 
(algebraically and metrically) with the system C(2") of all real-valued 
continuous functions on a compact Hausdorff space _P. The operations in 
C(2") are defined in the usual way and the norm is the supremum norm. 
I t  is well known that the states on C(F) consist of the regular Borel 
probability measures on 2"; that is, if ~, is a state, then there is a regular 
Borel probability measure/z on 2" such that 

co(f) = f f dtz 
F 

for a l l f ~  C(2"). 
An observable i )  ~ X is an idempotent if U 2 = U.  The idempotents 

correspond to the propositions in the Mackey model. Certainly the observ- 
ables 0 and I are idempotents, although there may be no other idempotents 
in the system X. Thus unlike the Mackey model in which the idempotents 
determine the set of observables, in the Segal model there may be insufficient 
idempotents to do this. Nevertheless, let us briefly consider the set of  idem- 
potents J in the system X. Since we would like to compare the Mackey and 
Segal models, it is of interest to study the structure of J .  I f  a, b ~ J we 
define a ~< b if co(a) < co(b) for every state co. I t  is easy to show that a < b 
if and only if b - a = U 2 for some U ~ X. I f  a e J it is natural to define 
a' = I - a .  

Lemma 4.1 

J is an orthocomplemented poset. 

Proof: Clearly ~< is a partial order and 0 ~< a ~</for all a ~ J .  It  is also clear 
that a" = a and a ~< b implies b' < a '  for all a, b ~ J .  We now show a v a' = I 
for all a ~ J .  Suppose b ~ J and b ~> a, a'. Then co(b) >~ co(a), 1 - co(a) for 
all states co. It  follows that co(b)> �89 for all states co. Now the system 
generated by b is a commutative system and is thus isomorphic to C(2") 
for some compact Hausdorff  space F. Since b is idempotent, it corresponds 
to a characteristic func t ionf  on 2'. Now Segal (1947) has proved that any 
state on a subsystem can be extended to a state on the entire system. It  
follows that Sfdl~ >~ �89 for every regular Borel probability measure/z on 2". 
By considering measures concentrated at points it follows tha t f i s  identically 
one on 2" and hence b = L 

We conjecture that F is actually a lattice. I f  S is the set of states on X, 
it follows that ( J , S )  is a weak proposition system. 

5. Sherman's Universal Counterexample 

There are two papers of Sherman (1951, 1956) which are of interest to 
us here. The first paper gives an improvement on Segal's (1947) paper and 
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the second gives an example of  a Segal observable system that  is useful for 
counterexamples. As mentioned in Section 2, this example will give further 
indications of  why we must  consider weak Mackey models which do not  
satisfy Axiom 5'. 

Let X = g 3  and define addition and multiplication by scalars in the usual 
way. Let I = (1,1,1) and (e/)" = ~" / fo r  n ~> 0 an integer. I f  x = (x~, X2, X3) • X, 

let 2 = maxx~, x = minx~ and let Xo = {x ~ J(:ff = 1,_x = -1}. ff  x e Xo, 
define x" = x if n is an odd integer, and x" = I if n is an even integer. I f  
x ~ X, then it is easy to see that  there is an Xo e Xo such that  x = O:Xo + flI, 
e, fl ~ R. Define 

x" = (~Xo + 3I)" :  s=o ~ (J)~s fl.-s XOs 

It  is easy to see that  x" is well defined. For  x ~ X we define 

flxll = !21 = H~x0 + [3II1 = m a x { l - ~  + 31, 1~ + [31} 
Sherman (1956) has shown that  with these operations X is an observable 
system. We now consider the set o f  idempotents J in X. 

Lemma 5.1 
I f x  ~ X t h e  following statements are equivalent. (i) x ~ J ;  (ii) x = 5(Xo + I),  

x 0 e X 0 ;  (iii) x=(xl,x2,x3) where x ~ = l ,  x s = 0 ,  0 < x k < l  for  i, j ,  k 
distinct; x = I or x = 0. 

Proof." I f  x e J ,  then x = o~xo + [31= (O~Xo +/31) 2 = (~2 + [32)1 + 2~[3X0. 
f f  xo = (Xl, x2, x3), we have 0~x~ + [3 = ~2 + [32 + 2o~[3xt, i = 1, 2, 3. Since 
x~ = 1 and xs = - 1  for  some i and j ,  we have ~ + [3 = ~2 + [32 + 2~[3 and 
- ~  + t3 = ~2 + [32 _ 2cq3. It  follows that  [3 = 5 and ~ = • The lemma then 
follows. 

It  is easy to see that  the order in J is pointwise order;  that  is, x < y  if 
xi < y~. Also it is easy to show that  J is a lattice and hence applying Lemma 
4.1, J is an or thocomplemented lattice. 

N o w  it is reasonable to expect that  in any structure preserving Mackey- 
type formulat ion for  X, J can be embedded in a structure preserving way 
in the associated proposi t ion system. Thus by examining ~r we can get some 
indication of  what  is necessary in such a proposi t ion system. We now give 
an example and a result which show that  if the natural  structure o f  J is 
to  be preserved, then the Mackey model into which X is embedded cannot  
satisfy Axiom 5'. 

We first give an example o f  two idempotents a, b in J such that  a < b 
and yet a and b are not  in a Boolean sub e-algebra of  ~r We do this by 
showing that  the or thomodular  identity b = a v (b ^ a') does not  hold. 
This will also show that  J is not  an or thomodular  lattice. Let a = (1,5,0) 
and b = (1,1,0). Then a < b. However,  a v (b ^ a') = (1,5,0) v [(1, 1,0) ^ 
(0,5, 1)] = (1,5,0) v (0,0,0) = (1,5,0) r b. As was noted in Section 2, if 
J is embedded in a Mackey  model satisfying Axiom 5', then a < b implies 
g <---} b. 

2 
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I t  is desirable that  the two idempotents  of  this example exist as incom- 
patible proposi t ions  in any  Mackey- type logic used to reformulate  the 
structure of  X, for  we can also show that  as idempotents  in X, a and b do 
not  commute .  We do this by  showing 2(a o b ) #  (2a )o  b. Indeed, since 
a = �89 + �89 and b = �89 + �89 we have a + b = (1, �89 + I 
and a - b = �88 - �88 and hence 
2(a o b) = �89 + b) z - (a - b) 2] = �89 3, O) - (0, �88 0)] = (2, ~ ,  O) 
Similarly, 2a 3 1 + b = {(1 ,~ , -1)  + 3/, 2a - b = � 8 9  + �89 and hence 
(2a) o b = �88 + b) 2 - (2a - b) 2] = �88 6, 0) - (1,0, 0)] = (2, 37, 0) 

The next theorem gives further evidence tha t  Axiom 5' is not  acceptable 
for  our purposes.  

Theorem 5.1 

There is no m a p  m : J - +  [0, I] with m ( I ) =  I which is additive on atl 
finite disjoint sequences in J .  

Proof: Suppose there is such an m. Then 1 = re(l)= m(Ve~)= ~ m(e~), 
where e~ is tha t  member  of  J with 1 in the i th entry and 0 elsewhere. 
Wi thout  loss of  generali ty suppose m(el)~ O. Let  ~ ~ R be such tha t  
0 < ~ < 1 and consider (0,1, ~). No te  that  el _1_ (0,1, ~) and el v (0,1, ~) = 1. 
Therefore,  m((0,1, ~)') = 1 - m(0,1, ~) = m(el). Also, m((0,1, ~)') = m((1,0, 
1 - ~)) = 1 - re(e2) since (1,0,1 - c~) 3- e2 and (1,0,1 - ~) v e2 = 1. Thus  
m(el) = 1 - re(e2) or m(e 0 + m(e2) = 1 and it follows that  m(e3) = 0. I f  we 
replace (0,1, c 0 by  (0, ~, 1), exactly the same argument  shows that  m(e2) = 0. 
I t  follows, therefore,  that  m(e~) = 1. But this leads to a contradiction. Fo r  
again, suppose 0 < c~ < 1. Then m(~, 1,0) = 1, since (~, 1,0) 3- e 3 and 
(ct, 1 , 0 )  V e 3 ----- 1, while re(el) = 1 implies r e ( e3 )  = 0 .  Therefore,  m((~, 1,0)') = 

0. However ,  we also have that  m((~, 1,0)') = m(1 - ~,0,1) = 1 - m(0,1,0) = 
1, since m(e2) = 0, (1 - ~,0,1) 3_ e2 and (1 - ~,0,1) v e2 = 1. 

6. Embedding the Segal Model in a Weak Mackey Model 

In  this section we consider the p rob lem of  embedding any Segal system 
in a weak Mackey  model.  

Theorem 6.1 

Let X be a Segal system and S its set of  states. Then there exists a weak 
Mackey  model  ((9,S), and a one-one m a p  ~- :X-+ (9 which satisfies the 
following condit ions:  (i) ~'p(x)=pz(x) if p is a polynomial ;  (ii) ~o(x)= 
~o(rx); (iii) - r (x+y)=Tx+ ~y; and (iv) Ilxll = [~-x] for  every x, y ~  X, 
~oeS .  

Proof: Let  d~ 0 be the set of  formal  expressions of  the f o r m f ( A ) ,  where A is 
a commuta t ive  subset of  X and f is a Borel function on A, the compac t  
Hausdor f f  space such tha t  C(A) is isometrically isomorphic  to the sub- 
system X(A) of  X generated by A. Let ~r  be the set of  probabi l i ty  measures  
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on the Borel sets B(R) of R and definep0: 0o • S-->.~ bypo(f(A),to)(E)= 
/~o~, a(f-1(E)) for all E e B(R) where/Lo~, a is the regular probability measure 
on A corresponding to to. I f  po(f(A),w)(E)=po(g(B),to)(E) for all 
to ~ S, E e B(R), write f (A) ~ g(B). It is clear that =~ is an equivalence 
relation. Let d~ be the set of equivalence classes and denote the equivalence 
class containingf(A) by [f(A)].  Define T: X -> 0 by Tx = [x]. If  ~'xl -- rx2, 
then xl T x2 and/~,,  xl = / ~ , x :  for all to e S. We then obtain to(xl) = to(x2) 
for all to e S and since S is full, xl = x2. Hence r is one-one. Define 
p:  t~ • S - - > ~  byp([f(A)] , to)(E)=/~A, ,~(f- l (E))  for all EeB(R).  Notice 
tha tp  is well defined. We now cheek the six axioms to show (r S) is a weak 
Mackey model. Axiom 1 holds by construction, and Axioms 2 and 4 are 
easily seen to hold. For  [ f (A)]  e r and real Borel function g note that 

p([g of(A)] ,  to) (E) =/z,o. a((g ~ f)-1(E)) = tz~o. a(f-1(g-'(E))) 

= p([f(A)], to) (g-l(E)) = p(g[f(A)], to) (E) 

Therefore, Axiom 3 is satisfied and g[f(A)] = [g of(A)] .  (6) If p ( [ f  (A)], 
to)(E) r 0, then/zoo, a ( f - l ( E ) )  r 0. Let h be a point in f - l ( E )  and let/za 
be the probability measure concentrated at A. Then/za generates a state on 
X(A) and by Theorem 4 Segal (1947) (Sherman, 1951, also needed) this 
state has extension toa to X. Since t z a ( f - l ( E ) ) =  1, p([f(A)],toa)(E)= 1. 
(5) Suppose El, E2 ~B(R) and El f)E2 = ~ .  Assume x, y ~  d~ and 
p(y, to)(E)>~p(x, to)(E1), p(x,w)(Ez) for every co ~S.  Without loss of 
generality we may assume that x, y ~ X. Let to be a pure state in X(x). 
Then, since/z,o, x is concentrated at a point, we have p(x, to)(El U E2) = 
p(x, to) (El) + p(x, w) (Ez), where the right-hand side must equal p(x, to) (El) 
or p(x, co)(E2). Now again by Theorem 4 Segal (1947), co has an extension 
to X and we have p(y, to)(E) ~ p(x, to)(El U E2). Since this inequality is 
preserved under convex combinations and weak limits, it follows from 
Segal (1947, p. 940) thatp(y, to)(E)>Jp(x, to)(E~ U E2) for all to ~ S. It is 
straightforward to show that ~- satisfies conditions (i)-(iv) and this is left 
to the reader. It  is also easily seen that (iii) and (iv) follow from (ii). 

This last theorem shows that all of  the algebraic and metric structure of 
a Segal system can be recovered in a weak Mackey model. 

Corollary 6.2 

If  ~" is the set of idempotents in X and (L, S) the weak logic associated 
with (d~,S), then for a, b ~ J (i) a < b in or if and only if ~-a < zb in (L, S), 
and (ii) r(a') = (~'a)'. 

Corollary 6.3 

If  x and y are commutative in X, then R(rx) U R(~,y) is a compatible set 
in the weak logic (L, S) (where R(rx) and R(.cy) are as in Section 2). 

Proof: Since x and y commute, there is a compact Hausdorff space A such 
that C(A) is isometrically isomorphic to X(x,y). L e t f ' ,  g' ~ C(A) be such 
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that [f ' (x,y)] = [x] and [g'(x,y)] = [y]. It is well known that there are 
real Borel functions h on A and f and g on R such that f '  = f o  h and 
g' = g  o h. Therefore, [ f o  h(x,y)] =f[h(x,y)] = Ix] and [g o h(x,y)] = 
g[h(x,y)] = [y]. It now follows that R(-cx) U R('~y) c R([h(x,y)]), and 
Lemma 2.4 implies the corollary. 

If  (X, S) is a Segal system, we call a triple ((9, S, r) satisfying the conditions 
in Theorem 6.1 a Maekey realization of(X, S). ff ((91, S) and (02, S) are weak 
Mackey models, we say that ((91, S) can be embedded in (0z, S) if there is a 
one-one map 5:(_01 ~(-02 such that (i) ~ f ( x ) = f ( S x )  for all f e ~ ;  (ii) 
p(3x, co)(.) = p(x, co)(.) for all (x, co) e ((g~, S). We say that (6) 0, S,~'0) is a 
minimal Mackey realization of (X, S) if ((90, S, %) can be embedded in any 
Mackey realization of (X, S). 

Theorem 6.4 

Any Segal system (X, S) has a minimal Mackey realization ((90, S, T0). 

Proof: The first part of the proof is similar to the proof of Theorem 6.1. 
We define (90 ={[ f (x ) ] :x  e X, f e N } ,  and ~-o :X~ (9o by ~-ox= Ix]. It 
follows, as in Theorem 6.1, that (0o, 5', To) is a Mackey realization of (X, S). 
Suppose now that ((gl, S, ~-1) is some Mackey realization of (X, S). Define 
5:(90 ~ (91 by 3[f(x)]  ~ f ( ' r  I X). We first show that b is well defined. Now, 
it follows from (ii) of Theorem 6.1 that x -+ w(x) and x -+ co(zl x) define 
the same positive linear functionals and so using the uniqueness of the 
Riesz representation theorem p(~-lx, co)(E)=lxx,,o(E) for all co e M, 
E E B(R). Hence, i f f  (x) ~ g(y) we have 

p ( f  ('q x), co) (E) = t~x, ~ ( f  -l(E)) = I% o~(g-l(E)) =P(g(r l  Y), co) (E) 

Therefore f ('rl x) --- g('qy) and 3 is well defined. We now prove properties, 
(i) and (ii) for an embedding, ff  x e 00 then x = [g(y)] for some g e 
y e X .  

(i) U ( x )  = bf([g(y)]) = 3 [ f  o g(y)] = f  o g(~-a y) =f(g(-rl  y)) 

= f (~[g(y)]) =f (3x ) ;  

(ii) p(3x, co) (E) = p(3[g(y) ], to) (E) = p(g(-r I y), w) (E) 

=p(-1 y, co) (g - ' ( e ) )  = 

= p([g(y)], co) (E) = p(xa co) (E). 

The main disadvantage of the minimal Mackey realization (d)o, S, to) is 
that Corollary 6.3 does not hold, in general, for it. 

We now give the example promised in Section 3 to provide justification 
for our departure from the usual structure given for a system of experimental 
propositions. Let X be Sherman's example of a Segal system given in 
Section 5, and let S be its set of states. It follows easily from the proof of 
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Theorem 6.1 that when p:  X • S ~ Jg / i s  defined by p(x,  o J) (E)  = tzx, ,o(E) 
for all E ~  B(R) ,  (X, S )  is a weak Mackey model and ( J ,  S) is its weak logic. 

First we give an example to show that compatibility in (~r S) should 
not be defined in terms of either splitting into disjoint propositions or 
generating a Boolean sub ~r-algebra. Let a = (l ,0,0) and b = (0,1,0). It  is 
clear that a _L b and that a and b generate the eight-element Boolean sub 
~r-algebra {0, (1,0,0), (0,1,0), (0,0, 1), (0,1,1), (1,0,1), (1, 1,0), I}. However, 
as idempotent observables in X, a and b do not commute. This follows by 
noting that X(a,  b) = X and that X is not commutative. Thus if the notion 
of 'noninterference' embodied in X is to be preserved in (~r S), the usual 
definition of compatibility is not adequate. 

Finally, note that the requirement that states on J be additive on all 
finite, disjoint sequences is too strong. Indeed, Theorem 5.1 shows that 
there are no such states on J .  
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